
1

Darwinia Optimistic Bridge: Sublinear Relay for
Interoperable Blockchains

Xiaodong Qian 1 and Xiaoyin Wang2

12Itering Tech Pte. Ltd
{1alex.chien, 2denny.wang}@itering.io

Abstract—To verify transactions, cryptocurrencies such as Bit-
coin [1] and Ethereum [2] require nodes to verify that the block-
chain is valid. This requirement means downloading and verifying
all blocks, which takes hours and requires gigabytes of bandwidth
and storage space. Therefore, clients with limited resources cannot
independently verify transactions without trusting the full node.
Bitcoin and Ethereum provide lightweight clients called simplified
payment verification (SPV) clients that can verify the chain by
downloading only the block header. Unfortunately, the storage
and bandwidth requirements of SPV clients still grow linearly
with chain length. Recently, NIPoPoW [3] and FlyClient [4] have
proposed a type of solution called super-light client. It is expected
that light clients only need to download and store the logarithmic
number of block headers, but this type of solution cannot be
directly used for light clients on the chain, that is, cross-chain
Relay. FlyClient requires making a certain degree of a hard fork
to the corresponding chain and supports the Merkle Mountain
Range (MMR) commitment before it can be used for relay on
the chain, they all have a certain degree of poor generality, Non-
Interactive Proof of Work (NIPoPoW) is only applicable to chains
with fixed block difficulty, and FlyClient needs to modify the
best probability block sampling protocol and variable-difficulty
verification model.

We introduce Darwinia ChainRelay, which is a novel cross-
chain verification relay, using technologies such as Merkle moun-
tain range (MMR) commitment, optimistic verification game,
super-light client framework, relay incentive model, etc. Darwinia
ChainRelay is able to achieve sub-linear performance by only
submitting logarithmic numbers of data including the block
header and its derived data. Darwinia ChainRelay overcomes the
limitations of FlyClient. The protocols do not need to fork the
target chain to use MMR. It has strong generality and can be
applied not only to the POW chain but also to other consensus
algorithm chains such as POS. Also, by only storing a single block
header between two verification executions, we can implement the
protocol using the design of on-demand verification, that is, before
each verification, we only need to submit one block header and
make sure it is confirmed and finalized.

I. INTRODUCTION

There are many efforts on building decentralized bridge
between different public chains for supporting swapping, trans-
fer, and more general verification.

Various technologies have been innovated to trying achieve
these goals. Hash Time-Locked Contracts(aka. HTLC) are
invented to support atomic swap assets in two different public
chains, but cannot support asset transfer and verification. To
support transfer and verification, several bridges solutions are
introduced, including semi-decentralized custodian model and
on-chain light client(aka. chain relay) solution.

Chain relay is a light client running on chain with verified
headers relayed from another chain’s full nodes. Cross-chain
verification transactions must be atomic and unstoppable, we
need chain relay to confirm the final state of another chain
before using it for cross-chain verification. Chain relay is to
build and maintain such an on-chain light client with the help
of off-chain relayers and on-chan light client verification.

The earliest on-chain light client we know is BTCRelay [5]
built by Consensys, later, Kyber Network also use on-chain
light client technologies to build a bi-direction bridge between
Ethereum and EOS, which is called WaterLoo [6].

This classic chain relay solutions have challenges of econo-
mic infeasible due to it is linear relay which means the maintain
cost of the relay is growing linear with the block height.

Here we propose a new solution which can resolve this
challenges by eliminate the need of relaying each block header
from target chain, and achieve a sublinear relay, we call it
Darwinia Chain Relay.

To verify events on target chain, the relay need commitment
such as merkle roots of events which are commonly recorded
in each block header. In darwinia relay, eliminating the need
of relaying each block header will result in lacking of these
merkle roots, thus we introduce merkle mountain range(MMR)
[7] as a new commitment representing the header’s previous
blockchain history. Besides, because the relayed block headers
are not continuous chained, this will make light client unable
to validate header, darwinia relay resolve header and MMR
validation by introducing optimistic verification game [8] as
sub protocol in relay.

By eliminating the need of relaying each block, darwinia
relay can achieve sublinear performance, comparing verifiable
blocks on target chain to the fee cost to maintain the relay.

Our contribution

• Through the introduction of an economic incentive mecha-
nism, verification users collect fees from the Relay chain,
and incentives are provided to honest block header submit-
ters. For fraudulent block header submissions to Relayer,
pledge guarantees are based on Slash-like penalties.

• By introducing the Optimistic Verification Game method,
the problem of not including MMR in the blockchain
head can be solved, and most blockchain protocols can
be supported.

• Optimistic Verification Game can also solve the problem
of malicious attacks under rational economic market

2

Fig. 1. Overview

games, so it can replace the complex probability-based
abstract proof design and heuristic non-interactive design
in FlyClient [4].

• Retain the design of MMR and variable difficulty MMR
check-in FlyClient design, and realize sub-linear Relay
under the premise that the block header is correct

The rest of the paper is organized as follows. Section
II provides an overview of our entire system. Section III
introduces under what circumstances our system is running,
and also introduces the definition of some technical indicators
of our system. Then, we introduced each component of our
system in section IV with technical details. In the end, we
introduced the practical application prospects of this paper.

II. OVERVIEW

For light clients, they need to be able to connect to a
complete set of nodes (called certifiers), at least one of which
is honest (holding a copy of a valid chain). The light client
does not know which one is honest, so Before the light client
updates the status, its verification logic needs to be able to
identify and filter out the data submitted by those honest nodes.
For the off-chain light client, the problem of having at least one
honest node can be solved by connecting to the full node, but
for the on-chain light client CR, the status update is not made
through a network interaction. It is achieved by submitting data
to the chain through blockchain transactions through the prover.
The cost will be higher, and that’s why we need to design
reasonable economic incentives to make this process practical.

The outer layer of Darwinia ChainRelay uses verification
games as subroutines. The roles in the verification game
include a solver who provides a solution for a specific task
and a challenger who disagrees with the solver’s solution. The
final decision role, that is, the referee, can always perform
calculations correctly and get results but has extremely limited
resources such as computing bandwidth or storage. Darwinia’s
referee is the entire group of validators, who reach a verdict
through systematic consensus.

Relay Worker

This worker is responsible for verifying, calculating, and
submitting the correct block header and its MMR on the chain.
Anyone can be a relay worker. The block header and its MMR
submitted to the relay on the chain are the solutions. The
answer is given by the author. When the solver submits the
block header and MMR, he also needs to attach a certain
amount of collateral. If a challenger later challenges his results
and is found and proved to be cheating by the outer layer,
then the system Punishment will be made and its pledge will
be confiscated. On the contrary, if there is no challenger to
challenge or win in a subsequent verification game, it will
prove to be correct and honest, and its pledge will be retrieved
and motivated by Relayer Models give rewards.

Challenger

The challenger is an off-chain role. Anyone can take it. It
will monitor each block header, and MMR answers submitted
to the Relay on the chain and compare it with the value
calculated by itself because the off-chain calculation cost is low

3

((No on-chain fees are required), so the challenger can easily
calculate the correct value. By comparing the correct value
with the submitted value of the solver, if there is a problem,
the challenger can determine that he can finally win through
the verification game. And make money by getting winning
rewards. Qualified challengers are rational and keen monitors.
They will seize every opportunity to challenge the solver and
win the verification game. If the final verification game finds
them false alarms, then the challenger will need to pay the
extra cost due to false alarms. Resources, and confiscate the
pledge fee attached to its challenge. On the contrary, once it
proves that the challenge is successful, it will be rewarded
systematically. These rewards are likely to come from pledged
items confiscated from the other party’s solver.

Base on our assumption, there should be at least one honest
Relay Worker. As a result, if this honest Relay Worker finds
that the block submitted by other people is different from what
he thinks is correct, then he will initiate a verification game as
a challenger, and reach a consensus in the end.

Judge

In our system, Judge is a credible character with fair but
expensive computing power. He is a program running on the
blockchain. Fig. 2. FLowChart in Section IV shows Judge’s
behavioral logic.

Verification game process

The verification game is advanced by a round of fixed
duration. The range of each round must be narrowed relative
to the last time to allow the verification game to converge to a
specific chain. Otherwise, the verification game will continue
forever, and it may fail. In Darwinia ChainRelay, the solver and
challenger in the verification game need to follow the proof-or-
punishment process, because the challenger may not be able
to prove that the submitted value of the solver is wrong in
only one round, so If you cannot submit a proof, you can
narrow the verification calculation by submitting an earlier
block header and its MMR. Once entering the verification
game, the challenger and the solvers are zero and the opponents
of the game. Before the final end, there will be a countdown
clock for each round time. If the countdown zero is reached, the
opponent does not continue the verification process (proof -or-
punishment or result-or-punishment), then the other party wins
and the game ends. On the contrary, if the verification game
continues, it will converge or partially converge to a range that
can be verified on the external chain.

Challenge waiting period

Waiting period for the opponent’s challenge. After the wai-
ting period, the opponent will give up and the other will win.

III. SYSTEM MODEL AND PROBLEM FORMULATION

If the blockchain network wants to complete interoperability
by supporting and using Darwinia ChainRelay, it needs to have
some conditions, which mainly include two parts, support for
light clients and can implement Darwinia ChainRelay protocol
through smart contracts, runtime or fork.

We assume that there are two blockchain networks, called
the target chain (T) and the verification chain (V), and they
meet an assumption that T and V are each safe. Among them,
T may be based on POW or POS, but in any case, based on a
consensus principle, it can determine a consistent, valid chain,
and continuously generate new legal blocks, There are ways
to verify the finality of its blocks There is a T on-chain light
client (CR) on V . V ’s verifier client can verify whether R (T)
already exists on T by broadcasting and executing a transaction
containing the receipt R (T) on T .

Standard cross-chain verification refers to verifying what
happens on another chain, including transactions, events, states,
etc., but there are premise assumptions for cross-chain verifi-
cation decentralized security, that is, the two chains and their
consensus are all safe:

Assumption 1: (SPV assumption). The chain with the most
PoW workload follows the network consensus and eventually
is accepted by most miners.

In addition, we also need to ensure that the two chains where
our relay is located can work normally:

Assumption 2: (Cross-chain Assumption). Both the cross-
chain target chain and the chain where verification occurs are
safe.

The Assumption2 is intuitive, because if there’s a 51%
attack on one chain, then that means existing consensus could
be violated. In that case, of course, some on-chain activities
confirmed by our relay will be invalid. Previous research has
shown that this assumption holds if the attacker has only a
small portion of all computing power. Under the SPV assump-
tion, light clients can verify whether a particular transaction
is included in the ledger. This ability is achieved by using
the Merkle tree root of the block transaction of the blocks
stored in the block header. A full node provides a chain of
SPV certificates for light clients, including the accompanying
node path of the transaction to the Merkle root node in the
transaction tree.

Verifier Model

The actor’s model can be simplified to only connect with
two provers and one verifier. We first assume that at least one
prover can be honest through the economic incentive model.
At the same time, to illustrate the problem, we can assume
another prover is a malicious attacker. The two provers update
the state of CR by continuously submitting the block header
data of T, and the verifier uses the state of CR to verify the
existence of the information (state, transaction, receipt, etc.) on
T.

Assumption 3: (one honest prover) At least there is one
honest prover.

As we said before, our system can continue to run properly
in the presence of a malicious relay. Then, of course, we need
to define the ”malicious”in the environment where this system
is running.

Assumption 4: (economic rationality) Any relay included in
our system, if it is malicious, then it must have economic
rationality. It will not launch an attack that has no economic
value.

Detailed explanation about technical indicator.

4

Sub-linear Relay

To achieve sub-linear Relay, we need to change the original
process of sequentially submitting block headers to on-demand
block headers. On-demand submitter blocks also mean that new
blocks can be submitted at intervals. The challenges are:
• The latest submitted block header The previous block

header and many previous block headers have not been
submitted, but both the pre hash verification and the
verification of the block difficulty adjustment require the
previous block header.

• Although MMR in FlyClient is used as a Chain Com-
mitment, it can solve the block existence and difficulty
adjustment before verification. However, because of the
limitation of the need to fork the protocol, it cannot be
used here. We can only assume that the verification block
header does not contain MMR. If MMR is required, we
can only maintain and calculate the MMR value at all
nodes outside the chain and submit it to Relay, but the
correctness of the MMR value is also calculated by the
MMR value of the previous block and the Hash increment
of the previous block.

• Variable difficulty MMR verification faces the same pro-
blem as Challenge 2.

In the absence of the previous block header, a correct and
legal block header of a specific height H and its MMR value
are given. With the latest and correct block header and its
MMR value, it can be used to verify all previous blocks and
transactions or events in the block. We use a verification game
to verify the latest block header submitted to the on-chain
Relay and in section IV we will explain its details.

Finality

Using Darwinia ChainRelay for cross-chain verification, its
effectiveness depends on the validity of the block’s exis-
tence proof and the transaction/receipt existence proof (Merkle
proof). Among them, the validity of the block’s existence proof
is related to the correctness and completeness of the on-chain
verification logic. Also, the confirmation of the block header
and its MMR used in the verification process is related to the
validity and termination of the block.

The characteristics related to block termination are called
the finality of the chain. The finality of different blockchain
networks is different. We mainly discuss two significant cate-
gories. One is consensus-based on POW, such as Bitcoin and
Ethereum 1.0. The probabilistic finality of the mechanism can
ensure that after a certain number of blocks are confirmed, the
probability of termination is almost close to 1. Although the
probabilistic finality cannot guarantee the absolute termination,
because such a network will have the phenomenon of local
chain reorganization (Reorg), its mathematical probabilistic
meaning of almost the end can already guarantee sufficient
security and practicality and resistance to attacks. The other
is a BFT-like consensus algorithm or a hybrid algorithm that
combines BFT, such as DPOS, etc. The finality of the block
is to achieve a certain confirmation when the block (usually
exceeds the current 2/3 validator node) After confirming), and

it can reach 100% finality, which can guarantee that this block
must be on-chain.

When we use Darwinia ChainRelay to verify transactions
or receipts, we need to consider whether the corresponding
block header (and its MMR value) used for verification has
been finalized. Checking finality is also an indispensable step
in verification protocol.

Finality of Verification game

Another very important property is the Finality of the
verification game. If this nature cannot be satisfied, it means
that in the event of a dispute, the judge cannot guarantee that it
will be able to give the final judgment. This important property
gives our system security in the presence of a malicious relay.

IV. SYSTEM COMPOSITION AND DESIGN DETAILS

Darwinia ChainRelay has three key design schemes. The
first is to use MMR to solve the scheme without uploading
each block header. The second is to use MMR to verify the
validity of the block without forking the target chain. Under
the assumption of economic rationality, the system is optimized
and optimized by using the Verification Game and the pledge
incentive mechanism.

Chain Commitment

In order to achieve the sub-linear property, we have to
make sure that those provers commit their chain before further
interaction, because the relay in our system won’t download
every node’s head to achieve economic efficiency. If we don’t
ask for a commitment in advance, it will be difficult for a
judge with limited computing power to efficiently locate the
fork point of the two chains involved in potential disputes,
because the malicious node can deceive the judge along with
the erification game. Finding a invalid node will be much easier
with a chain commitment.

The most basic and vital blockchain commitment data struc-
ture is the Merkle Tree. Bitcoin and its SPV clients have widely
used Merkle Tree. In some other blockchain networks in the
future, some changes in Merkle Tree have also occurred. Such
as Merkle Patricia Tree and Merkle Mountain Range(MMR),
etc. These variants have added some other useful features while
maintaining the characteristics of the Merkle Tree. Here we
will only introduce MMR, and the introduction about Merkle
Tree and Merkle Patricia Tree is put in the appendix.

Merkle Mountain Range

To submit the entire blockchain, Darwinia ChainRelay requi-
res the prover to maintain a Merkle tree structure called Merkle
Maintain Range (MMR) on all blocks added to the blockchain
so far. In addition to Merkle trees, MMR also allows valid
additions on the prover and valid block inclusion verification
on the verifier. Also, it enables a valid subtree proof, that is,
a proof that two MMRs are consistent on the first k leaves.
At each block height i, the prover appends the hash of the
previous block Bi-1 to the latest MMR and records the new
MMR root Mi in the header of Bi (see Figure 1). As a result,

5

each MMR root stored at each block height can be viewed as a
commitment to the entire blockchain that reaches that height.

Merkle Mountain Range is a variant of the Merkle Tree
data structure. Unlike Merkle Tree, MMR can quickly build
new MMRs by adding leaf nodes to the existing tree structure
incrementally. Below is an example of an MMR structure:

Here is a picture showing how to calculate root:

definition
A Merkle Mountain Range, M, is defined as a tree with n

leaves, root r, and the following properties:
• M is a binary hash tree.
• M has depth log2 n.
• If n>1, let n=2i +j such that i=log2(n1):

- r.left is an MMR with 2i leaves.
- r.right is an MMR with j leaves.

Note: M is a balanced binary hash tree, i.e., M is a Merkle
tree. Therefore, for all nodes k ∈M , ∃Πk ∈M .

Theorem 1: (Incremental) Given an MMR, M, with root r
and n leaves, AppendLeaf(r,x) will return an MMR, M’, with
n+ 1 leaves (the n leaves of M plus x added as the right-most
leaf).

Theorem 2: (SubTree Root Generation) For k ≤ n, given
Πxk ∈ Mn , i.e., the Merkle proof that leaf xk is in Mn , a
verifier can regenerate rk, the root of Mk.

Corollary 1: (Chain Prefix Commit) If x1, ..., xn are the
hashes of blocks 1 through n of chain Cn, rn commits the first
n blocks to xn, and Πk ∈ Mn for any k commits x1, ..., xk
as the blocks of the chain Ck, where chain Ck is a prefix of
chain Cn.

Corollary 2: (Block Commit) If an adversary changes any
block i in the chain in any way, then its hash xi also changes,
so any MMR Mk for k ≤ i with root rk’ that contains the new
block xi’ has that rk′/ = rk.

Darwinia ChainRelay is a sub-linear Relay, it cannot store
all the blocks on the blockchain, and the verifier can trick the
Relay by submitting a non-existing block certificate. To solve
this problem, we need to append a new MMR root value to
the latest block. At each block height i, the prover appends the
hash of the previous block Bi-1 to the latest MMR and adds
the new The MMR root Mi is recorded in the header of Bi.
This MMR root value can be understood as a commitment to

integrate the history of the blockchain. The prover of Darwinia
ChainRelay can submit the block header and the MMR value
together by maintaining the block header and its MMR value.
(How to ensure the validity of the block header and MMR
value is another issue, which we will solve by verifying the
game protocol).

If MMR is applied to all block headers of the blockchain,
that is, all block headers are used as leaf nodes of the MMR,
the prover will be able to efficiently attach the MMR to the
block header and push it to the light client or relay at the
same time. With MMR, the verifier will be able to use the
latest block MMR and verification block for efficient block
inclusion proof, without requiring Relay to store all historical
blocks. In addition, MMR can also be used for subtree proof,
that is, the proof that two MMRs are consistent on the first k
leaves.

The Merkle Mountain Range (MMR) model is an effectively
updateable commitment mechanism that allows the prover
to commit to the current blockchain with a small (constant
size) commitment, and the inclusion proof of the block is
logarithmic.

Chain Relay MMR Implementation

To implement MMR in an ordinary light client, you need to
make some modifications to the protocol, and add the MMR
value as a part of the block header. But for Relay, which is a
light client on the chain, there is some additional complexity
in the implementation.

First, because the protocol of the target chain cannot be
modified, the MMR value needs to be submitted to Relay as
an addition to the block header, not as part of the block header.
Second, suppose that we already know the Header and MMR
values of the previous block on the chain (in more complicated
cases, we hand over the verification game protocol). When the
Relay on the chain verifies the block header and its MMR,
because we only have the MMR root Value, does not store
the leaf nodes of all MMR blocks, so it is not possible to
directly calculate the next block corresponding to the MMR
tree from the previous MMR tree plus the next block header
hash. In order to solve this problem, we divide it into two
steps. First, calculate the MMR and its root value off-chain and
submit the MMR root value to the chain. At the same time, the
corresponding Merkle certificate of the previous block needs
to be submitted. Second, after receiving the MMR root value
on the chain, it is verified and passed. The Merkle proof of
the block and the MMR root value is calculated to calculate
the MMR root value of the previous block, and compared with
the MMR value of the previous block submitted and verified
before if they are consistent, the verification passes. In this way,
it is not necessary to store the entire MMR tree corresponding
to each block on the chain, but only the corresponding MMR
root.

Verification Game

The goal of the interactive verification game is to provide a
dispute resolution mechanism between the problem solver and
the questioner, where the problem solver provides a solution

6

Fig. 2. FLowChart

to a computing problem, and the questioner does not agree
with the solution, so Wake the verification game to achieve the
purpose of the arbitration. This arbitration process is generally
iterative and convergent.

The verification game protocol is used in Darwinia Chain-
Relay to solve the problem of attackers submitting illegal
chains. The solution is to introduce economic games to make
honest nodes motivated and have methods to find the wrong
submissions and ensure the correctness of the state of light
nodes And legitimacy. In order to introduce a verification game,
two conditions are required. One is to have an incentive system
and guarantee openness to attract enough honest participants
to participate in it. The second is to prove honestly when
an attacker submits wrong block data. The author can have
a way to prove its error. Since the performance and economic
feasibility of the verification and disapproval process must be
considered, this process can be either one-time fast, iterative,
and convergent. The process of iteration and convergence is
acceptable because this affects the participants of the system
to an optimal balance, that is, under the premise of economic
rationality, most malicious people will not launch attacks.

The verification game will go through a series of rounds,

each round reducing the scope of the controversial calculation.
In the first round, the challenger forces the solver to perform
a determined and timed pair of calculation steps. In the next
round, the challenger repeatedly challenges a subset calculated
by the solver during this interval, and then continues to
challenge in a subset of the subset, and so on, until, in the
final round, the final challenge becomes minor enough that the
judges can make a final decision on whether the challenge is
justified. The referee also requires the solver and challenger
to follow the rules of the game. At the end of the verification
game, either the cheating solver is found and punished in the
outer layer of Darwinia ChainRelay, or the challenger pays the
resources consumed by the false alarm.

Verification Protocol

With our actor’s model, which is mentioned at section III,
we can describe a protocol process. If both prover nodes
have submitted the same block header and block, and their
chain heights are the same, the client can directly accept this
submission, and this part of the agreement ends. Otherwise,
if the data submitted by the two provers are inconsistent, it
means that one of the provers holds an invalid chain. In this

7

case, the system will use a sub-protocol called a verification
game to determine which of the two provers submitted is the
chain of honesty.
• Verifier has access to r = root of some Merkle tree, MT.
• The Prover has access to MT and generates a Merkle-

Proof path of some x ∈MT = Πk ∈MT using protocol
3 and sends it to the verifier.

• Verifier uses the proof and x to build up the path to r’
using protocol 4, and checks that r’ = r.

• If the checks pass, the Verifier accepts the proof,
otherwise, it rejects the proof.

On-demand Verification Design

According to the commonly used collaboration process in
Chain Relay, Darwinia ChainRelay steps can be summarized
as follows:
• Step A: A prover (also known as Relayer or Worker)

submits the block header and its MMR value to the on-
chain relay.

• Step B: The on-chain relay performs the block header
and MMR validity verification process. The central part
includes a verification game protocol, and some other
provers may participate in it.

• Step C: Relay on the chain determines the finality of the
block header

• Step D: The verifier (also known as the verification service
user) submits the transaction or receipt that needs to be
verified to the chain, uses the MMR to prove the existence
of the block and uses the corresponding Merkle tree root
of the block header to conduct the existence proof of the
transaction (receipt).

• Step E: Other on-chain operations performed after the
cross-chain verification passes (or fails).

Even further, we can make some overall optimizations to
this process, which can save unnecessary on-chain submission
operations. Because the requirements generally come from
steps D and E, we can improve and design a relay that the
prover submits on demand, that is, the three operations A, B,
and C are not scheduled or required for each block, but when
the user executes step D and finds that the relevant block header
and MMR certificate are missing, then A, B, and C operations
are performed. The optimized steps are as follows:

V erifier −→ Pre D −→ A −→ B −→ C −→ D −→ E

Economic Incentive Model

To ensure the decentralization and sustainability of the
agreement, we need to design the agreement so that it does
not require a license and introduces economic incentives so
that the entire system can continue to run autonomously.

In Darwinia ChainRelay, the economic incentive model is
mainly divided into the Relay framework layer and the verifica-
tion game sub-protocol layer. The former is a general economic
model of Relayer. It is used to motivate the prover (also called
Relayer or Worker) to submit block headers and MMRs to the
system to maintain the Relay status and provide verification
services to the verifier. In general, it is used to encourage proof
The income of the verifier comes from the service fee paid by

the verifier. For a specific Relayer, the corresponding Relayer
status check must be completed. Therefore, the workload and
cost of the prover to submit the block header and its MMR
are relatively fixed, and the verification service The demand
comes from the market and application needs. If the service
revenue can be kept greater than the cost, we call the design
of the Relayer economically feasible. For the traditional linear
relayer, it is necessary to submit the block header to maintain
the relayer state continuously to continuously submit the block
header to maintain the relayer state, so the fuel cost is very
high, and it is not economically feasible in many scenarios,
such as BTCRelay. Darwinia ChainRelayer, as a sub-linear
relay optimized by on-demand verification, can achieve good
economic feasibility, and the verifier only needs to pay a small
fee to complete cross-chain verification.

At the same time, Darwinia ChainRelay introduced a sub-
protocol of the verification game to achieve a sub-linear relay.
Therefore, in addition to the economic incentive design related
to the relay, we also need to design a corresponding economic
model for this verification game protocol. Because economic
rationality is an essential premise for verifying game protocols,
it is through mechanisms such as the Prove-or-punish introdu-
ced in the verification game that this hypothesis of economic
rationality can work.

Relay Economic Incentive Model

In the general relay, the prover is responsible for submitting
the block header and its MMR to maintain the relay state,
and the verifier uses the verification service provided by the
relay. The prover can be anyone, but the submission of the
block header and its MMR is not free, and network fees
need to be paid. To ensure that enough certifiers are willing
to participate in it, maintain a competitive market, and be
sustainable, verify the pricing of services There is a need
to provide a premium above the average cost level. For the
traditional linear relay, a simplified way is to calculate and
accumulate all the block submission costs and accumulate
them into a cost contribution pool. When providing verification
services, use the average level of the cost contribution pool
in the past as a reference. Under this model, because the
use of future verification services is difficult to predict, the
price of verification services will continue to fluctuate, and the
contribution of the workload provided by the prover will be at
risk of making ends meet.

Price of verification service = (cumulative fuel fee submitted
by the block header within T / number of times verification

service is used) + premium
Because Darwinia ChainRelay has the optimization of

on-demand verification, the cost of its verification service is
also simplified, so this model can be simplified to:

Verification service price = block header submission fuel fee
+ premium

The optimization of on-demand verification has two benefits.
The first benefit is that before using the verification service, you
can determine the price of the verification service and decide
whether to continue using the verification service. If you do
not continue, you do not need to submit the block header, and

8

the prover does not need to submit the block header, so you
do not need to pay for fuel costs, which reduces waste. It can
be seen that in this case, because the prover has no risk of
making ends meet, anyone is willing to participate in it if they
have the ability. The second benefit is that because the cost of
submitting the fuel fee for the block header will not change
significantly, and under the condition of sufficient competition,
the premium will also be very meager low, so it can continue
to provide more stable verification service prices.

Verification Game Economic Model

In Darwinia ChainRelay, after the prover submits a block
header and MMR value because its previous block header
status is generally not submitted or unknown, it cannot be
immediately determined whether it is valid or not. Observer
A in the figure below might be the first submitter, but after
entering the verification game protocol, it is impossible to
determine whether each observer is honest until it has wholly
converged, until a block header record that has been submitted
is the most recent The block header to be verified is the
previous one. In this case, we use the Pre Hash and MMR
subtree theorem to determine the validity of the submitted
block header.

In the whole process, the design goal of the pledge pu-
nishment system is to make the verification game agreement
end as soon as possible, so as to achieve the effect and
equilibrium of the optimistic verification game. Therefore,
when each challenge observer further advances the verification
game process by submitting a new block header, a fixed value
pledge is required to be locked in the protocol. After the
convergence is judged, the honestly submitted pledge will be
returned but the collateral submitted by the fraud challenger
will be confiscated by the system. These confiscated materials
can be used to reward the winner of the final verification game
process, that is, the honest prover. We have previously proven
that honest provers must win the verification game process.

In the above verification game harvesting process, the pro-
cess of submitting the pledged items for confiscation and
winning back is gradually progressive (recursive). In the sim-
plified case, there may only be two observers and opponents
playing against each other, but the more complex multi-party
game situation is also possible, so during the submission and
challenge, the opponent relationship between the players will
be recorded. The last submitter of the challenge is the opponent
of the challenger, and the pledged items confiscated after the
failure of the opponent will be returned to another party. The
figure above shows the process of the pledge of the fraud prover
being gradually harvested by the honest prover.

It can be seen that once entering the verification game
protocol, the attack cost of the fraud prover is very high, and
it is proportional to the time of the attack, and the benefit of
the honest challenger is very considerable, and multiple honest
challengers can cooperate and work together to fight against the
fraud prover, the pledge of the fraud prover will be confiscated
and rewarded to the honest challenger.

Optimistic Behavior Analysis

The above verification game seems to have a disadvantage.
Once it enters the verification game, although it is conver-
gent, its time-consuming may be very long. However, after
further analysis, we found that if the assumption of economic
rationality is introduced, due to the punishment and incentive
mechanism, the attacker is not willing to enter the verification
game process because the game participation is sufficiently
open. Eyeing enters the verification game, and the perpetrators
will eventually fail with certainty, and be punished for bearing
the attack losses. Because the process of verifying the game can
be participated by anyone, it is only necessary to have at least
one honest challenger (monitor) to ensure that the final block
confirmed by Darwinia ChainRelay is legal. For economically
rational participants, it is impossible to attack, because the
attack has no possibility of reward or success, but it may bear
the penalty of forfeiture. Therefore, it can be concluded that the
vast majority of the solutions provided by the solver are correct,
and no subsequent verification process will be performed. The
block header and the MMR submitted by the solver will be
deleted after a short challenge waiting period. confirm. Only
a small number of unintentional procedural errors may enter
the short-term verification game process. Participating in an
unintentional error cannot be discerned whether it is intentional
and affects system reliability, so it will also be punished.

DOS If we assume that the attacker is non-economically
rational and willing to pay a certain cost to attack the system,

9

then Delay Confirmation attacks will be a more common type,
that is, the attacker pays the price of the pledged fee for the
penalty to extend the verification game as a result, a block
header in Darwinia ChainRelay, namely its MMR, cannot be
confirmed for a long time. However, it is worth noting that its
attack cost is linearly related to its Delay Confirmation attack
effect (time duration), so it can be suppressed by adjusting
the penalty parameter, and this theoretical possibility exists in
many networks, which is not a severe issue.

Put Things Together

With the help of MMR and verification game protocols, we
can assemble a sub-linear Relay on the chain to provide cross-
chain verification services. The Relay on the chain stores the
discontinuous block header and its derived MMR value. This
value is submitted by the prover and verified and verified by
the verification game protocol. There is a premise that at least
one honest prover participates in the Agreement process.

When a block header and its MMR value are stored and
confirmed by the relay on the chain, then the validator can use
this valid information of the relay for cross-chain verification,
and the validator can verify any transaction or receipt before
the block is changed.

V. DARWINIA CHAINRELAY APPLICATIONS

Here we need to briefly introduce the characteristics of our
products

Token Bridge

The cross-chain token bridge refers to the asset transfer
channel between two heterogeneous chains. Through the token
bridge, assets can be safely and reliably transferred on different
heterogeneous chains. The subsequent token bridge solution in
this article will be backed by the concept of cryptocurrency
backed asset(CBA) model and decentralized backing techno-
logy.

Cryptocurrency Backed Asset Model(CBA Model)

To describe the solution more accurately and clearly, we
use the cryptocurrency backed asset (CBA) model to describe
it. In the cross-chain CBA model, two heterogeneous chains
are called backing blockchain and issuing blockchain. Cross-
chain assets do not exist natively on both chains, but through
backing technology, by locking as backing assets on the
backing chain, while issuing assets on the issuing chain for
cross-chain circulation. The assets issued by backing native
assets on the backing blockchain are called backed assets, or
CBA for short. The security and redeemability of backed assets
are determined by the security and reliability of decentralized
backing technology.

Darwinia cross-chain token bridge is a cross-chain bridge
solution between the backing chain and the issuing chain, and
it is also a decentralized asset backing technology.

Decentralized Backing Technology

Decentralized backing technology is a more accurate des-
cription of cross-chain asset gateway technology, which mainly
includes cross-chain verification modules and backed issuing
modules. In the case of not strictly distinguishing the degree of
centralization, the backing method also includes the traditional
centralized backing method, for example, a method operated
by an external institution, such as USDT, the backing asset is
USD, and CBA is USDT issued on other chains.

Common decentralized backing techniques include:
• There are trust nodes or custodian mechanisms, where the

trusted node or custodian uses multi-signature / threshold
signature and other multi-centralized technologies to avoid
single points of failure, such as Parity Bridge, ChainX, etc.

• Some solutions use collateralized bridges to ensure the
redeemability of cross-chain assets, partially combined
with Chain Relay. XClaim has the disadvantage that it is
only suitable for homogeneous assets with good liquidity,
and its economic feasibility is relatively weak.

• Fully use the Chain Relay for chain verification, such
as BTCRelay, WaterLoo, Darwinia ChainRelay, etc. The
prerequisite of using this solution is that the issuing chain
needs to support the implementation of smart contracts,
on-chain runtimes, hard forks, and other methods. Such
blockchains like Chain Relay and Bitcoin network cannot
be used as an issuing chain. The advantage is that it can
support a variety of native assets, including illiquid assets
and NFT assets. Economic feasibility depends on the type
of Chain Relay. Sub-linear Chain Relay can achieve better
economic feasibility.

Darwinia Cross-chain Token Bridge

Darwinia’s cross-chain token bridge solution is a two-way
cross-chain token bridge based on chain relay. The chain relay

10

we are going to develop adopts the design of the Darwinia
Sublinear Relay, which has better performance and economic
feasibility.

REFERÊNCIAS

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Manubot,
Tech. Rep., 2019.

[2] “Ethereum whitepaper,” https://ethereum.org/en/whitepaper/, accessed:
2020-07-09.

[3] A. Kiayias, A. Miller, and D. Zindros, “Non-interactive proofs of proof-of-
work,” in International Conference on Financial Cryptography and Data
Security. Springer, 2020, pp. 505–522.

[4] B. Bünz, L. Kiffer, L. Luu, and M. Zamani, “Flyclient: Super-light clients
for cryptocurrencies,” in 2020 IEEE Symposium on Security and Privacy
(SP). IEEE, 2020, pp. 928–946.

[5] “Btc relay,” http://btcrelay.org/.
[6] “Waterloo — a decentralized practical bridge between eos and

ethereum,” https://blog.kyber.network/waterloo-a-decentralized-practical-
bridge-between-eos-and-ethereum-1c230ac65524, accessed: 2019-02-26.

[7] “Merkle mountain ranges,” https://github.com/mimblewimble/grin/blob/ma
ster/doc/mmr.md, accessed: 2019-11-26.

[8] J. Teutsch and C. Reitwießner, “A scalable verification solution for
blockchains,” arXiv preprint arXiv:1908.04756, 2019.

[9] “Collision resistance,” https://en.wikipedia.org/wiki/Collision resistance,
accessed: 2019-11-26.

11

Fig. 3. High-Level Protocol Overview

Fig. 4. Composition of cross-chain token bridge module on backing chain

12

Fig. 5. Composition of cross-chain transfer bridge modules on the issuing chain

VI. APPENDIX

Merkle Tree

Merkle Tree is a tree-like data structure in cryptography and
computer science. Each leaf node uses the hash of the data
block as a label, and nodes other than the leaf node use the
cryptographic hash of its child node’s label as the label. Hash
trees can efficiently and securely verify the contents of large
data structures.

Hash trees can be used to verify any type of data that is
stored, processed, and transmitted from a computer to another.
They can help ensure that data blocks received from other
peers in the peer-to-peer network are not corrupted and altered,
and even check if other peers are lying and sending fake data
blocks.

.1) Definition (Collision resistant hash function)

Collision resistance is a property of cryptographic hash
functions: a hash function H is collision resistant if it is hard

to find two inputs that hash to the same output; that is, two
inputs a and b such that H(a) = H(b), and a 6=b [9].

.2) Definition (Merkle Tree)

A Merkle tree is a balanced binary tree, where each leaf
node stores some value, and each non-leaf node holds the value
H(LeftChild||RightChild), where H is a collision-resistant
hash function. The Balanced binary tree here means a tree with
n leaves that has a depth less than or equal to log2(n).

.3) Definition (Merkle Proof)

Given a Merkle tree, MT, with root r, a Merkle proof that
x is the kth node in MT, Πk ∈ MT , are the siblings of each
node on the path from x to r. Since MT has depth at most
log2(n), the proof length is at mostlog2(n) + 1 as each node
in the path can be calculated from its two children so we only
need the siblings and the 2 leaf nodes.

Theorem 3: (Soundness of Merkle-proofs). Given a Merkle
tree, MT built using a collision-resistant hash function (Defi-
nition 8), a polynomial-time adversary cannot produce a valid
proof Πk ∈MT , for a k not in MT.

Theorem 4: (Completeness of Merkle proofs) Given a Mer-
kle tree built using a collision-resistant hash function, MT, and
a node k ∈MT , a polynomial-time adversary cannot generate
a proof Πk ∈MT that is not a true path in MT.

13

Merkle Patricia Tree

Merkle Patricia Tree (MPT), or Merkle Patricia Trie, is
a variant structure of Merkle Tree common in Ethereum. It
provides persistence and can map data (byte arrays) between
binary files of arbitrary length. It is defined according to a
variable data structure, mapping 256-bit binary fragments into
binary data of arbitrary length. Binary data is usually stored
in a database. The core of MPT and its protocol specification
requirements is to provide an identifier for a given key value,
which can be a 32-byte sequence or a null byte sequence.
As for how to construct and implement the Trie structure
efficiently, it is an implementation-level detail.

Compared with Merkle Tree, the most significant advantage
of MPT is that it can quickly retrieve leaf nodes. This is very
useful in the state tree. When the state needs to be continuously
transferred, it can maximize the reuse of existing state storage
data without a frequent copy. As shown in the figure below,
when a leaf node changes, most of the stored data can remain
unchanged. You only need to calculate the other branch nodes
and root nodes above the leaf node.

